Cargando…
Docking approaches for modeling multi-molecular assemblies
Computational docking approaches aim to overcome the limited availability of experimental structural data on protein–protein interactions, which are key in biology. The field is rapidly moving from the traditional docking methodologies for modeling of binary complexes to more integrative approaches...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324114/ https://www.ncbi.nlm.nih.gov/pubmed/32615514 http://dx.doi.org/10.1016/j.sbi.2020.05.016 |
Sumario: | Computational docking approaches aim to overcome the limited availability of experimental structural data on protein–protein interactions, which are key in biology. The field is rapidly moving from the traditional docking methodologies for modeling of binary complexes to more integrative approaches using template-based, data-driven modeling of multi-molecular assemblies. We will review here the predictive capabilities of current docking methods in blind conditions, based on the results from the most recent community-wide blind experiments. Integration of template-based and ab initio docking approaches is emerging as the optimal strategy for modeling protein complexes and multimolecular assemblies. We will also review the new methodological advances on ab initio docking and integrative modeling. |
---|