Cargando…
Lower Bounds on the Number of Realizations of Rigid Graphs
Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Toward this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324120/ https://www.ncbi.nlm.nih.gov/pubmed/32655833 http://dx.doi.org/10.1080/10586458.2018.1437851 |
Sumario: | Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Toward this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gröbner basis computations. |
---|