Cargando…
Lower Bounds on the Number of Realizations of Rigid Graphs
Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Toward this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponen...
Autores principales: | Grasegger, Georg, Koutschan, Christoph, Tsigaridas, Elias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324120/ https://www.ncbi.nlm.nih.gov/pubmed/32655833 http://dx.doi.org/10.1080/10586458.2018.1437851 |
Ejemplares similares
Ejemplares similares
-
FlexRiLoG—A SageMath Package for Motions of Graphs
por: Grasegger, Georg, et al.
Publicado: (2020) -
Efficiently sampling the realizations of bounded, irregular degree sequences of bipartite and directed graphs
por: Erdős, Péter L., et al.
Publicado: (2018) -
Upper and lower bounds for the mass of the geodesic flow on graphs
por: Coornaert, M, et al.
Publicado: (1995) -
Bounds on the domination number and the metric dimension of co-normal product of graphs
por: Javaid, Imran, et al.
Publicado: (2018) -
Which graphs are rigid in [Formula: see text] ?
por: Dewar, Sean, et al.
Publicado: (2021)