Cargando…
Inhibition stabilization is a widespread property of cortical networks
Many cortical network models use recurrent coupling strong enough to require inhibition for stabilization. Yet it has been experimentally unclear whether inhibition-stabilized network (ISN) models describe cortical function well across areas and states. Here, we test several ISN predictions, includi...
Autores principales: | Sanzeni, Alessandro, Akitake, Bradley, Goldbach, Hannah C, Leedy, Caitlin E, Brunel, Nicolas, Histed, Mark H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324160/ https://www.ncbi.nlm.nih.gov/pubmed/32598278 http://dx.doi.org/10.7554/eLife.54875 |
Ejemplares similares
-
Performance in even a simple perceptual task depends on mouse secondary visual areas
por: Goldbach, Hannah C, et al.
Publicado: (2021) -
Finding patterns in cortical responses
por: Sanzeni, Alessandro, et al.
Publicado: (2020) -
Response nonlinearities in networks of spiking neurons
por: Sanzeni, Alessandro, et al.
Publicado: (2020) -
Emergence of Irregular Activity in Networks of Strongly Coupled Conductance-Based Neurons
por: Sanzeni, A., et al.
Publicado: (2022) -
Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks
por: Histed, Mark H.
Publicado: (2018)