Cargando…
A Knuth-Bendix-Like Ordering for Orienting Combinator Equations
We extend the graceful higher-order basic Knuth-Bendix order (KBO) of Becker et al. to an ordering that orients combinator equations left-to-right. The resultant ordering is highly suited to parameterising the first-order superposition calculus when dealing with the theory of higher-order logic, as...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324232/ http://dx.doi.org/10.1007/978-3-030-51074-9_15 |
Sumario: | We extend the graceful higher-order basic Knuth-Bendix order (KBO) of Becker et al. to an ordering that orients combinator equations left-to-right. The resultant ordering is highly suited to parameterising the first-order superposition calculus when dealing with the theory of higher-order logic, as it prevents inferences between the combinator axioms. We prove a number of desirable properties about the ordering including it having the subterm property for ground terms, being transitive and being well-founded. The ordering fails to be a reduction ordering as it lacks compatibility with certain contexts. We provide an intuition of why this need not be an obstacle when using it to parameterise superposition. |
---|