Cargando…
Complexity analysis and dynamic characteristics of EEG using MODWT based entropies for identification of seizure onset
In this paper, complexity analysis and dynamic characteristics of electroencephalogram (EEG) signal based on maximal overlap discrete wavelet transform (MODWT) has been exploited for the identification of seizure onset. Since wavelet-based studies were well suited for classification of normal and ep...
Autores principales: | Raghu, Shivarudhrappa, Sriraam, Natarajan, Temel, Yasin, Rao, Shyam Vasudeva, Hegde, Alangar Sathyaranjan, Kubben, Pieter L |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324271/ https://www.ncbi.nlm.nih.gov/pubmed/32561693 http://dx.doi.org/10.7555/JBR.33.20190021 |
Ejemplares similares
-
Subgroup State Prediction under Different Noise Levels Using MODWT and XGBoost
por: Zhao, Xin, et al.
Publicado: (2023) -
Drug Treatment Effect Model Based on MODWT and Hawkes Self-Exciting Point Process
por: Nie, Xiaokai, et al.
Publicado: (2022) -
Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP’s in multichannel EEGs
por: Padma Shri, T. K., et al.
Publicado: (2017) -
Automated epileptic seizures detection using multi-features and multilayer perceptron neural network
por: Sriraam, N., et al.
Publicado: (2018) -
Detection of epileptic seizure based on entropy analysis of short-term EEG
por: Li, Peng, et al.
Publicado: (2018)