Cargando…
Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states
Epileptic seizures are known for their unpredictable nature. However, recent research provides that the transition to seizure event is not random but the result of evidence accumulations. Therefore, a reliable method capable to detect these indications can predict seizures and improve the life quali...
Autores principales: | Slimen, Itaf Ben, Boubchir, Larbi, Seddik, Hassene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324272/ https://www.ncbi.nlm.nih.gov/pubmed/32561696 http://dx.doi.org/10.7555/JBR.34.20190097 |
Ejemplares similares
-
EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms
por: Slimen, Itaf Ben, et al.
Publicado: (2020) -
Editorial commentary on special issue of Advances in EEG Signal Processing and Machine Learning for Epileptic Seizure Detection and Prediction
por: Boubchir, Larbi
Publicado: (2020) -
Magnetoencephalography-identified preictal spiking correlates to preictal spiking on stereotactic EEG
por: Zillgitt, Andrew, et al.
Publicado: (2022) -
Preictal Dynamics of EEG Complexity in Intracranially Recorded Epileptic Seizure: A Case Report
por: Bob, Petr, et al.
Publicado: (2014) -
Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning
por: Saemaldahr, Raghdah, et al.
Publicado: (2023)