Cargando…
Classification of low-density EEG for epileptic seizures by energy and fractal features based on EMD
We are here to present a new method for the classification of epileptic seizures from electroencephalogram (EEG) signals. It consists of applying empirical mode decomposition (EMD) to extract the most relevant intrinsic mode functions (IMFs) and subsequent computation of the Teager and instantaneous...
Autores principales: | Moctezuma, Luis Alfredo, Molinas, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324275/ https://www.ncbi.nlm.nih.gov/pubmed/32561698 http://dx.doi.org/10.7555/JBR.33.20190009 |
Ejemplares similares
-
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals
por: Sánchez-Hernández, Sergio E., et al.
Publicado: (2022) -
Towards a minimal EEG channel array for a biometric system using resting-state and a genetic algorithm for channel selection
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Classification of single-channel EEG signals for epileptic seizures detection based on hybrid features
por: Lu, Yanan, et al.
Publicado: (2018)