Cargando…
An optimized design of seizure detection system using joint feature extraction of multichannel EEG signals
The detection of seizure onset and events using electroencephalogram (EEG) signals are important tasks in epilepsy research. The literature available on seizure detection has discussed the implementation of advanced signal processing algorithms using tools accessed over the cloud. However, seizure m...
Autores principales: | Torse, Dattaprasad, Desai, Veena, Khanai, Rajashri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324277/ https://www.ncbi.nlm.nih.gov/pubmed/32561699 http://dx.doi.org/10.7555/JBR.33.20190019 |
Ejemplares similares
-
Optimal feature selection for COVID-19 detection with CT images enabled by metaheuristic optimization and artificial intelligence
por: Torse, Dattaprasad A., et al.
Publicado: (2023) -
A Physiology-Based Seizure Detection System for Multichannel EEG
por: Shen, Chia-Ping, et al.
Publicado: (2013) -
Interobserver agreement for neonatal seizure detection using multichannel EEG
por: Stevenson, Nathan J., et al.
Publicado: (2015) -
Detection and Severity Identification of Neonatal Seizure Using Deep Convolutional Neural Networks from Multichannel EEG Signal
por: Debelo, Biniam Seifu, et al.
Publicado: (2023) -
Emotional State Classification from MUSIC-Based Features of Multichannel EEG Signals
por: Hossain, Sakib Abrar, et al.
Publicado: (2023)