Cargando…
An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data
In this paper, we applied support vector regression to predict the number of COVID-19 cases for the 12 most-affected countries, testing for different structures of nonlinearity using Kernel functions and analyzing the sensitivity of the models’ predictive performance to different hyperparameters set...
Autores principales: | Peng, Yaohao, Nagata, Mateus Hiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324351/ https://www.ncbi.nlm.nih.gov/pubmed/32834608 http://dx.doi.org/10.1016/j.chaos.2020.110055 |
Ejemplares similares
-
Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis
por: Xu, Chuhan, et al.
Publicado: (2023) -
Overcome Support Vector Machine Diagnosis Overfitting
por: Han, Henry, et al.
Publicado: (2014) -
Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting
por: Snider, Eric J., et al.
Publicado: (2023) -
The overfitted brain hypothesis
por: Prince, Luke Y., et al.
Publicado: (2021) -
Overfitting the Literature to One Set of Stimuli and Data
por: Grootswagers, Tijl, et al.
Publicado: (2021)