Cargando…
Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks
NiFe alloy and NiFe/Cu multilayered nanowire (NW) networks were grown using a template-assisted electrochemical synthesis method. The NiFe alloy NW networks exhibit large thermopower, which is largely preserved in the current perpendicular-to-plane geometry of the multilayered NW structure. Giant ma...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324447/ https://www.ncbi.nlm.nih.gov/pubmed/32602034 http://dx.doi.org/10.1186/s11671-020-03343-8 |
Sumario: | NiFe alloy and NiFe/Cu multilayered nanowire (NW) networks were grown using a template-assisted electrochemical synthesis method. The NiFe alloy NW networks exhibit large thermopower, which is largely preserved in the current perpendicular-to-plane geometry of the multilayered NW structure. Giant magneto-thermopower (MTP) effects have been demonstrated in multilayered NiFe/Cu NWs with a value of 25% at 300 K and reaching 60% around 100 K. A large spin-dependent Seebeck coefficient of –12.3 μV/K was obtained at room temperature. The large MTP effects demonstrate a magnetic approach to control thermoelectric properties of flexible devices based on NW networks. |
---|