Cargando…
Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants
Biofilm forming from a variety of microbial pathogens can pose a serious health hazard that is difficult to combat. Nanotechnology, however, represents a new approach to fighting and eradicating biofilm-forming microorganisms. In the present study, the sustainable synthesis and characterization of b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324531/ https://www.ncbi.nlm.nih.gov/pubmed/32655511 http://dx.doi.org/10.3389/fmicb.2020.01143 |
_version_ | 1783551955177570304 |
---|---|
author | Mohanta, Yugal Kishore Biswas, Kunal Jena, Santosh Kumar Hashem, Abeer Abd_Allah, Elsayed Fathi Mohanta, Tapan Kumar |
author_facet | Mohanta, Yugal Kishore Biswas, Kunal Jena, Santosh Kumar Hashem, Abeer Abd_Allah, Elsayed Fathi Mohanta, Tapan Kumar |
author_sort | Mohanta, Yugal Kishore |
collection | PubMed |
description | Biofilm forming from a variety of microbial pathogens can pose a serious health hazard that is difficult to combat. Nanotechnology, however, represents a new approach to fighting and eradicating biofilm-forming microorganisms. In the present study, the sustainable synthesis and characterization of biocompatible silver nanoparticles (AgNPs) from leaf extracts of Semecarpus anacardium, Glochidion lanceolarium, and Bridelia retusa was explored. Continuous synthesis was observed in a UV–vis spectroscopic analysis and the participating phytoconstituents, flavonoids, phenolic compounds, phytosterols, and glycosides, were characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy. The size and surface charge of the particles were also measured by dynamic light scattering spectroscopy. Scanning electron microscopy study was employed to examine the morphology of the nanoparticles. The spectroscopic and microscopic study confirmed the successful synthesis of AgNPs by plant extracts acting as strong reducing agents. The synthesized AgNPs were screened for antibacterial and anti-biofilm activity against human pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Results of the study demonstrate the potential of phyto-synthesized AgNPs to act as anti-biofilm agents and for other biomedical applications. |
format | Online Article Text |
id | pubmed-7324531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73245312020-07-10 Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants Mohanta, Yugal Kishore Biswas, Kunal Jena, Santosh Kumar Hashem, Abeer Abd_Allah, Elsayed Fathi Mohanta, Tapan Kumar Front Microbiol Microbiology Biofilm forming from a variety of microbial pathogens can pose a serious health hazard that is difficult to combat. Nanotechnology, however, represents a new approach to fighting and eradicating biofilm-forming microorganisms. In the present study, the sustainable synthesis and characterization of biocompatible silver nanoparticles (AgNPs) from leaf extracts of Semecarpus anacardium, Glochidion lanceolarium, and Bridelia retusa was explored. Continuous synthesis was observed in a UV–vis spectroscopic analysis and the participating phytoconstituents, flavonoids, phenolic compounds, phytosterols, and glycosides, were characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy. The size and surface charge of the particles were also measured by dynamic light scattering spectroscopy. Scanning electron microscopy study was employed to examine the morphology of the nanoparticles. The spectroscopic and microscopic study confirmed the successful synthesis of AgNPs by plant extracts acting as strong reducing agents. The synthesized AgNPs were screened for antibacterial and anti-biofilm activity against human pathogens Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Results of the study demonstrate the potential of phyto-synthesized AgNPs to act as anti-biofilm agents and for other biomedical applications. Frontiers Media S.A. 2020-06-23 /pmc/articles/PMC7324531/ /pubmed/32655511 http://dx.doi.org/10.3389/fmicb.2020.01143 Text en Copyright © 2020 Mohanta, Biswas, Jena, Hashem, Abd_Allah and Mohanta. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Mohanta, Yugal Kishore Biswas, Kunal Jena, Santosh Kumar Hashem, Abeer Abd_Allah, Elsayed Fathi Mohanta, Tapan Kumar Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title | Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title_full | Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title_fullStr | Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title_full_unstemmed | Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title_short | Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants |
title_sort | anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the indian medicinal plants |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324531/ https://www.ncbi.nlm.nih.gov/pubmed/32655511 http://dx.doi.org/10.3389/fmicb.2020.01143 |
work_keys_str_mv | AT mohantayugalkishore antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants AT biswaskunal antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants AT jenasantoshkumar antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants AT hashemabeer antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants AT abdallahelsayedfathi antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants AT mohantatapankumar antibiofilmandantibacterialactivitiesofsilvernanoparticlessynthesizedbythereducingactivityofphytoconstituentspresentintheindianmedicinalplants |