Cargando…

First demonstration of machine-designed ultra-flat, low-cost directive antenna

In this paper, we present a fully automated procedure for the direct design of a novel class of single-feed flat antennas with patterning of a conductive surface. We introduce a convenient surface discretization, based on hexagonal cells, and define an appropriate objective function, including both...

Descripción completa

Detalles Bibliográficos
Autores principales: Zucchi, Marcello, Giordanengo, Giorgio, Righero, Marco, Vecchi, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324596/
https://www.ncbi.nlm.nih.gov/pubmed/32601327
http://dx.doi.org/10.1038/s41598-020-67354-2
Descripción
Sumario:In this paper, we present a fully automated procedure for the direct design of a novel class of single-feed flat antennas with patterning of a conductive surface. We introduce a convenient surface discretization, based on hexagonal cells, and define an appropriate objective function, including both gain and input matching requirements. The reference geometry is constituted by a very thin, single feed-point square panel. It features a backing metal plate (“ground”) and a top conductive layer, which is automatically patterned to achieve the desired radiation and input matching properties. The process employs an evolutionary algorithm combined with a boundary element electromagnetic solver. By applying this method, we designed an antenna tailored to the 2.4 GHz ISM frequency band, with a size of [Formula: see text] , i.e., [Formula: see text] wavelengths and an height of 4 mm, or 0.03 wavelengths. Measured data confirmed the expected high gain (13 dBi), with a remarkable aperture efficiency (higher than 50%, including losses), thus validating the proposed approach.