Cargando…
Machine learning based identification of relevant parameters for functional voice disorders derived from endoscopic high-speed recordings
In voice research and clinical assessment, many objective parameters are in use. However, there is no commonly used set of parameters that reflect certain voice disorders, such as functional dysphonia (FD); i.e. disorders with no visible anatomical changes. Hence, 358 high-speed videoendoscopy (HSV)...
Autores principales: | Schlegel, Patrick, Kniesburges, Stefan, Dürr, Stephan, Schützenberger, Anne, Döllinger, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324600/ https://www.ncbi.nlm.nih.gov/pubmed/32601277 http://dx.doi.org/10.1038/s41598-020-66405-y |
Ejemplares similares
-
Interdependencies between acoustic and high-speed videoendoscopy parameters
por: Schlegel, Patrick, et al.
Publicado: (2021) -
OpenHSV: an open platform for laryngeal high-speed videoendoscopy
por: Kist, Andreas M., et al.
Publicado: (2021) -
Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters
por: Schlegel, Patrick, et al.
Publicado: (2019) -
Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate
por: Schützenberger, Anne, et al.
Publicado: (2016) -
Evaluation of Analytical Modeling Functions for the Phonation Onset Process
por: Petermann, Simon, et al.
Publicado: (2016)