Cargando…
Development of fluorescent Escherichia coli for a whole-cell sensor of 2ʹ-fucosyllactose
2′-Fucosyllactose (2′-FL), a major component of fucosylated human milk oligosaccharides, is beneficial to human health in various ways like prebiotic effect, protection from pathogens, anti-inflammatory activity and reduction of the risk of neurodegeneration. Here, a whole-cell fluorescence biosenso...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324612/ https://www.ncbi.nlm.nih.gov/pubmed/32601279 http://dx.doi.org/10.1038/s41598-020-67359-x |
Sumario: | 2′-Fucosyllactose (2′-FL), a major component of fucosylated human milk oligosaccharides, is beneficial to human health in various ways like prebiotic effect, protection from pathogens, anti-inflammatory activity and reduction of the risk of neurodegeneration. Here, a whole-cell fluorescence biosensor for 2′-FL was developed. Escherichia coli (E. coli) was engineered to catalyse the cleavage of 2′-FL into l-fucose and lactose by constitutively expressing α-l-fucosidase. Escherichia coli ∆L YA, in which lacZ is deleted and lacY is retained, was employed to disable lactose consumption. E. coli ∆L YA constitutively co-expressing α-l-fucosidase and a red fluorescence protein (RFP) exhibited increased fluorescence intensity in media containing 2′-FL. However, the presence of 50 g/L lactose reduced the RFP intensity due to lactose-induced cytotoxicity. Preadaptation of bacterial strains to fucose alleviated growth hindrance by lactose and partially recovered the fluorescence intensity. The fluorescence intensity of the cell was linearly proportional to 1–5 g/L 2′-FL. The whole-cell sensor will be versatile in developing a 2′-FL detection system. |
---|