Cargando…
Deep convolutional neural networks for automatic segmentation of thoracic organs‐at‐risk in radiation oncology – use of non‐domain transfer learning
PURPOSE: Segmentation of organs‐at‐risk (OARs) is an essential component of the radiation oncology workflow. Commonly segmented thoracic OARs include the heart, esophagus, spinal cord, and lungs. This study evaluated a convolutional neural network (CNN) for automatic segmentation of these OARs. METH...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324695/ https://www.ncbi.nlm.nih.gov/pubmed/32602187 http://dx.doi.org/10.1002/acm2.12871 |