Cargando…
Deep convolutional neural networks for automatic segmentation of thoracic organs‐at‐risk in radiation oncology – use of non‐domain transfer learning
PURPOSE: Segmentation of organs‐at‐risk (OARs) is an essential component of the radiation oncology workflow. Commonly segmented thoracic OARs include the heart, esophagus, spinal cord, and lungs. This study evaluated a convolutional neural network (CNN) for automatic segmentation of these OARs. METH...
Autores principales: | Vu, Charles C., Siddiqui, Zaid A., Zamdborg, Leonid, Thompson, Andrew B., Quinn, Thomas J., Castillo, Edward, Guerrero, Thomas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324695/ https://www.ncbi.nlm.nih.gov/pubmed/32602187 http://dx.doi.org/10.1002/acm2.12871 |
Ejemplares similares
-
Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks
por: Zhang, Daguang, et al.
Publicado: (2020) -
Review of advanced catheter technologies in radiation oncology brachytherapy procedures
por: Zhou, Jun, et al.
Publicado: (2015) -
Using 4DCT‐ventilation to characterize lung function changes for pediatric patients getting thoracic radiotherapy
por: Vinogradskiy, Yevgeniy, et al.
Publicado: (2018) -
Is Halcyon feasible for single thoracic or lumbar vertebral segment SBRT?
por: Li, Fang, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020)