Cargando…
Evaluation of a neural network‐based photon beam profile deconvolution method
PURPOSE: The authors have previously shown the feasibility of using an artificial neural network (ANN) to eliminate the volume average effect (VAE) of scanning ionization chambers (ICs). The purpose of this work was to evaluate the method when applied to beams of different energies (6 and 10 MV) and...
Autores principales: | Mund, Karl, Wu, Jian, Liu, Chihray, Yan, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324697/ https://www.ncbi.nlm.nih.gov/pubmed/32227629 http://dx.doi.org/10.1002/acm2.12865 |
Ejemplares similares
-
Reconstruction of volume averaging effect‐free continuous photon beam profiles from discrete ionization chamber array measurements using a machine learning technique
por: Mund, Karl, et al.
Publicado: (2021) -
Corrections of photon beam profiles of small fields measured with ionization chambers using a three‐layer neural network
por: Schönfeld, Ann‐Britt, et al.
Publicado: (2021) -
Beam flatness modulation for a flattening filter free photon beam utilizing a novel direct leaf trajectory optimization model
por: Potter, Nicholas J., et al.
Publicado: (2020) -
Comparison of two commercial detector arrays for IMRT quality assurance
por: Li, Jonathan G., et al.
Publicado: (2009) -
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system
por: Yan, Guanghua, et al.
Publicado: (2013)