Cargando…
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface
Cognitive workload is one of the widely invoked human factors in the areas of human–machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In t...
Autores principales: | Asgher, Umer, Khalil, Khurram, Khan, Muhammad Jawad, Ahmad, Riaz, Butt, Shahid Ikramullah, Ayaz, Yasar, Naseer, Noman, Nazir, Salman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324788/ https://www.ncbi.nlm.nih.gov/pubmed/32655353 http://dx.doi.org/10.3389/fnins.2020.00584 |
Ejemplares similares
-
Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain–Machine Interface (BMI)
por: Asgher, Umer, et al.
Publicado: (2021) -
Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain–computer interface
por: Khalil, Khurram, et al.
Publicado: (2022) -
Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU–sEMG Interface
por: Shahzad, Waseem, et al.
Publicado: (2019) -
Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain–Computer Interface
por: Arif, Saad, et al.
Publicado: (2021) -
Double-Criteria Active Learning for Multiclass Brain-Computer Interfaces
por: She, Qingshan, et al.
Publicado: (2020)