Cargando…
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity
Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The Lactobacillus fermentum JX3...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Exeley Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324864/ https://www.ncbi.nlm.nih.gov/pubmed/32548989 http://dx.doi.org/10.33073/pjm-2020-024 |
_version_ | 1783552039674970112 |
---|---|
author | ZHANG, DI LI, CHUANG SHI, RUIRUI ZHAO, FENGCHUN YANG, ZHENGYOU |
author_facet | ZHANG, DI LI, CHUANG SHI, RUIRUI ZHAO, FENGCHUN YANG, ZHENGYOU |
author_sort | ZHANG, DI |
collection | PubMed |
description | Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The Lactobacillus fermentum JX306 strain, which showed high scavenging activity of DPPH free radical and hydrogen radical, and a strong lipid peroxidation inhibition rate in vitro was selected. L. fermentum JX306 was also examined for its antioxidant capacity in D-galactose-induced aging mice. The results showed that L. fermentum JX306 could significantly decrease malondialdehyde (MDA) levels and improve the activity of glutathione peroxidase (GSH-Px), and total antioxygenic capacity (TOC) in the serum, kidney, and liver. Meanwhile, the strain could remarkably upregulate the transcriptional level of the antioxidant-related enzyme genes, such as peroxiredoxin1 (Prdx1), glutathione reductase (Gsr), glutathione peroxidase (Gpx1), and thioredoxin reductase (TR3) encoding genes in the liver. Besides, histopathological observation proves that this probiotic strain could effectively inhibit oxidative damage to the liver and kidney in aging mice. Therefore, this unique antioxidant strain may have a high application value in the functional food industry and medicine industry. |
format | Online Article Text |
id | pubmed-7324864 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Exeley Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73248642020-07-01 Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity ZHANG, DI LI, CHUANG SHI, RUIRUI ZHAO, FENGCHUN YANG, ZHENGYOU Pol J Microbiol Microbiology Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The Lactobacillus fermentum JX306 strain, which showed high scavenging activity of DPPH free radical and hydrogen radical, and a strong lipid peroxidation inhibition rate in vitro was selected. L. fermentum JX306 was also examined for its antioxidant capacity in D-galactose-induced aging mice. The results showed that L. fermentum JX306 could significantly decrease malondialdehyde (MDA) levels and improve the activity of glutathione peroxidase (GSH-Px), and total antioxygenic capacity (TOC) in the serum, kidney, and liver. Meanwhile, the strain could remarkably upregulate the transcriptional level of the antioxidant-related enzyme genes, such as peroxiredoxin1 (Prdx1), glutathione reductase (Gsr), glutathione peroxidase (Gpx1), and thioredoxin reductase (TR3) encoding genes in the liver. Besides, histopathological observation proves that this probiotic strain could effectively inhibit oxidative damage to the liver and kidney in aging mice. Therefore, this unique antioxidant strain may have a high application value in the functional food industry and medicine industry. Exeley Inc. 2020-06 2020-06-04 /pmc/articles/PMC7324864/ /pubmed/32548989 http://dx.doi.org/10.33073/pjm-2020-024 Text en © 2020 Di Zhang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Microbiology ZHANG, DI LI, CHUANG SHI, RUIRUI ZHAO, FENGCHUN YANG, ZHENGYOU Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title |
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title_full |
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title_fullStr |
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title_full_unstemmed |
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title_short |
Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity |
title_sort | lactobacillus fermentum jx306 restrain d-galactose-induced oxidative stress of mice through its antioxidant activity |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324864/ https://www.ncbi.nlm.nih.gov/pubmed/32548989 http://dx.doi.org/10.33073/pjm-2020-024 |
work_keys_str_mv | AT zhangdi lactobacillusfermentumjx306restraindgalactoseinducedoxidativestressofmicethroughitsantioxidantactivity AT lichuang lactobacillusfermentumjx306restraindgalactoseinducedoxidativestressofmicethroughitsantioxidantactivity AT shiruirui lactobacillusfermentumjx306restraindgalactoseinducedoxidativestressofmicethroughitsantioxidantactivity AT zhaofengchun lactobacillusfermentumjx306restraindgalactoseinducedoxidativestressofmicethroughitsantioxidantactivity AT yangzhengyou lactobacillusfermentumjx306restraindgalactoseinducedoxidativestressofmicethroughitsantioxidantactivity |