Cargando…
Robust principal component analysis for accurate outlier sample detection in RNA-Seq data
BACKGROUND: High throughput RNA sequencing is a powerful approach to study gene expression. Due to the complex multiple-steps protocols in data acquisition, extreme deviation of a sample from samples of the same treatment group may occur due to technical variation or true biological differences. The...
Autores principales: | Chen, Xiaoying, Zhang, Bo, Wang, Ting, Bonni, Azad, Zhao, Guoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324992/ https://www.ncbi.nlm.nih.gov/pubmed/32600248 http://dx.doi.org/10.1186/s12859-020-03608-0 |
Ejemplares similares
-
An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data
por: George, Nysia I., et al.
Publicado: (2015) -
Robust Principal Component Thermography for Defect Detection in Composites
por: Ebrahimi, Samira, et al.
Publicado: (2021) -
OD-seq: outlier detection in multiple sequence alignments
por: Jehl, Peter, et al.
Publicado: (2015) -
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
por: de Cheveigné, Alain, et al.
Publicado: (2018) -
Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
por: Liu, Zhenqiu
Publicado: (2020)