Cargando…
Don’t dismiss logistic regression: the case for sensible extraction of interactions in the era of machine learning
BACKGROUND: Machine learning approaches have become increasingly popular modeling techniques, relying on data-driven heuristics to arrive at its solutions. Recent comparisons between these algorithms and traditional statistical modeling techniques have largely ignored the superiority gained by the f...
Autores principales: | Levy, Joshua J., O’Malley, A. James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325087/ https://www.ncbi.nlm.nih.gov/pubmed/32600277 http://dx.doi.org/10.1186/s12874-020-01046-3 |
Ejemplares similares
-
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021) -
A Bayesian hierarchical logistic regression model of multiple informant family health histories
por: Lin, Jielu, et al.
Publicado: (2019) -
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017) -
paraFaceTest: an ensemble of regression tree-based facial features extraction for efficient facial paralysis classification
por: Barbosa, Jocelyn, et al.
Publicado: (2019) -
Meta‐analysis and meta‐regression of transcriptomic responses to water stress in Arabidopsis
por: Rest, Joshua S., et al.
Publicado: (2016)