Cargando…

CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data

To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 in...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Liqing, Li, Yongjin, Edmonson, Michael N., Zhou, Xin, Newman, Scott, McLeod, Clay, Thrasher, Andrew, Liu, Yu, Tang, Bo, Rusch, Michael C., Easton, John, Ma, Jing, Davis, Eric, Trull, Austyn, Michael, J. Robert, Szlachta, Karol, Mullighan, Charles, Baker, Suzanne J., Downing, James R., Ellison, David W., Zhang, Jinghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325161/
https://www.ncbi.nlm.nih.gov/pubmed/32466770
http://dx.doi.org/10.1186/s13059-020-02043-x
_version_ 1783552099894689792
author Tian, Liqing
Li, Yongjin
Edmonson, Michael N.
Zhou, Xin
Newman, Scott
McLeod, Clay
Thrasher, Andrew
Liu, Yu
Tang, Bo
Rusch, Michael C.
Easton, John
Ma, Jing
Davis, Eric
Trull, Austyn
Michael, J. Robert
Szlachta, Karol
Mullighan, Charles
Baker, Suzanne J.
Downing, James R.
Ellison, David W.
Zhang, Jinghui
author_facet Tian, Liqing
Li, Yongjin
Edmonson, Michael N.
Zhou, Xin
Newman, Scott
McLeod, Clay
Thrasher, Andrew
Liu, Yu
Tang, Bo
Rusch, Michael C.
Easton, John
Ma, Jing
Davis, Eric
Trull, Austyn
Michael, J. Robert
Szlachta, Karol
Mullighan, Charles
Baker, Suzanne J.
Downing, James R.
Ellison, David W.
Zhang, Jinghui
author_sort Tian, Liqing
collection PubMed
description To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at https://github.com/stjude/Cicero.
format Online
Article
Text
id pubmed-7325161
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-73251612020-06-30 CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data Tian, Liqing Li, Yongjin Edmonson, Michael N. Zhou, Xin Newman, Scott McLeod, Clay Thrasher, Andrew Liu, Yu Tang, Bo Rusch, Michael C. Easton, John Ma, Jing Davis, Eric Trull, Austyn Michael, J. Robert Szlachta, Karol Mullighan, Charles Baker, Suzanne J. Downing, James R. Ellison, David W. Zhang, Jinghui Genome Biol Method To discover driver fusions beyond canonical exon-to-exon chimeric transcripts, we develop CICERO, a local assembly-based algorithm that integrates RNA-seq read support with extensive annotation for candidate ranking. CICERO outperforms commonly used methods, achieving a 95% detection rate for 184 independently validated driver fusions including internal tandem duplications and other non-canonical events in 170 pediatric cancer transcriptomes. Re-analysis of TCGA glioblastoma RNA-seq unveils previously unreported kinase fusions (KLHL7-BRAF) and a 13% prevalence of EGFR C-terminal truncation. Accessible via standard or cloud-based implementation, CICERO enhances driver fusion detection for research and precision oncology. The CICERO source code is available at https://github.com/stjude/Cicero. BioMed Central 2020-05-28 /pmc/articles/PMC7325161/ /pubmed/32466770 http://dx.doi.org/10.1186/s13059-020-02043-x Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Tian, Liqing
Li, Yongjin
Edmonson, Michael N.
Zhou, Xin
Newman, Scott
McLeod, Clay
Thrasher, Andrew
Liu, Yu
Tang, Bo
Rusch, Michael C.
Easton, John
Ma, Jing
Davis, Eric
Trull, Austyn
Michael, J. Robert
Szlachta, Karol
Mullighan, Charles
Baker, Suzanne J.
Downing, James R.
Ellison, David W.
Zhang, Jinghui
CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title_full CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title_fullStr CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title_full_unstemmed CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title_short CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data
title_sort cicero: a versatile method for detecting complex and diverse driver fusions using cancer rna sequencing data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325161/
https://www.ncbi.nlm.nih.gov/pubmed/32466770
http://dx.doi.org/10.1186/s13059-020-02043-x
work_keys_str_mv AT tianliqing ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT liyongjin ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT edmonsonmichaeln ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT zhouxin ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT newmanscott ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT mcleodclay ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT thrasherandrew ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT liuyu ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT tangbo ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT ruschmichaelc ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT eastonjohn ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT majing ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT daviseric ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT trullaustyn ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT michaeljrobert ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT szlachtakarol ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT mullighancharles ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT bakersuzannej ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT downingjamesr ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT ellisondavidw ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata
AT zhangjinghui ciceroaversatilemethodfordetectingcomplexanddiversedriverfusionsusingcancerrnasequencingdata