Cargando…
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational methods is not an easy task, but is much needed, as cur...
Autores principales: | Thafar, Maha A., Olayan, Rawan S., Ashoor, Haitham, Albaradei, Somayah, Bajic, Vladimir B., Gao, Xin, Gojobori, Takashi, Essack, Magbubah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325230/ https://www.ncbi.nlm.nih.gov/pubmed/33431036 http://dx.doi.org/10.1186/s13321-020-00447-2 |
Ejemplares similares
-
DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
por: Thafar, Maha A., et al.
Publicado: (2021) -
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
por: Thafar, Maha A., et al.
Publicado: (2022) -
Application and evaluation of knowledge graph embeddings in biomedical data
por: Alshahrani, Mona, et al.
Publicado: (2021) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023) -
DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
por: Olayan, Rawan S, et al.
Publicado: (2018)