Cargando…
Methylation data imputation performances under different representations and missingness patterns
BACKGROUND: High-throughput technologies enable the cost-effective collection and analysis of DNA methylation data throughout the human genome. This naturally entails missing values management that can complicate the analysis of the data. Several general and specific imputation methods are suitable...
Autores principales: | Lena, Pietro Di, Sala, Claudia, Prodi, Andrea, Nardini, Christine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325236/ https://www.ncbi.nlm.nih.gov/pubmed/32600298 http://dx.doi.org/10.1186/s12859-020-03592-5 |
Ejemplares similares
-
Evaluation of pre-processing on the meta-analysis of DNA methylation data from the Illumina HumanMethylation450 BeadChip platform
por: Sala, Claudia, et al.
Publicado: (2020) -
Estimage: a webserver hub for the computation of methylation age
por: Di Lena, Pietro, et al.
Publicado: (2021) -
Addressing
Missing Data in GC × GC Metabolomics:
Identifying Missingness Type and Evaluating the Impact of Imputation
Methods on Experimental Replication
por: Davis, Trenton J., et al.
Publicado: (2022) -
Editorial: Computational Methods for Analysis of DNA Methylation Data
por: Di Lena, Pietro, et al.
Publicado: (2022) -
Reading Profiles in Multi-Site Data With Missingness
por: Eckert, Mark A., et al.
Publicado: (2018)