Cargando…
Subdivision of graphs in [Formula: see text]
For any graphs [Formula: see text] , and H, the notation [Formula: see text] means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. The set [Formula: see text] consists of all Ramsey [Formula: see text]-minimal graphs, namely all graphs F satisfyi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325471/ https://www.ncbi.nlm.nih.gov/pubmed/32637673 http://dx.doi.org/10.1016/j.heliyon.2020.e03843 |
Sumario: | For any graphs [Formula: see text] , and H, the notation [Formula: see text] means that any red-blue coloring of all edges of F will contain either a red copy of G or a blue copy of H. The set [Formula: see text] consists of all Ramsey [Formula: see text]-minimal graphs, namely all graphs F satisfying [Formula: see text] but for each [Formula: see text] , [Formula: see text]. In this paper, we propose a simple construction for creating new Ramsey minimal graphs from the previous known Ramsey minimal graphs (by subdivision operation). In particular, suppose [Formula: see text] and let [Formula: see text] be an edge contained in a cycle of F, we construct a new Ramsey minimal graph in [Formula: see text] from graph F by subdividing the edge e four times. |
---|