Cargando…
Detection and Independent Validation of Model-Based Quantitative Transcriptional Regulation Relationships Altered in Lung Cancers
Differential expressions of genes are widely evaluated for the diagnosis and prognosis correlations with diseases. But limited studies investigate how transcriptional regulations are quantitatively altered in diseases. This study proposes a novel model-based quantitative measurement of transcription...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325891/ https://www.ncbi.nlm.nih.gov/pubmed/32656193 http://dx.doi.org/10.3389/fbioe.2020.00582 |
Sumario: | Differential expressions of genes are widely evaluated for the diagnosis and prognosis correlations with diseases. But limited studies investigate how transcriptional regulations are quantitatively altered in diseases. This study proposes a novel model-based quantitative measurement of transcriptional regulatory relationships between mRNA genes and Transcription Factor (TF) genes (mqTrans features). This study didn't consider the regulatory relationships between TF genes, so the mRNA genes were the protein-coding genes excluding the TF genes. The models are trained in the control samples in a lung cancer dataset and evaluated in two independent datasets and the hold-out testing samples from the third dataset. Twenty-nine mRNA genes are detected with transcriptional regulations quantitatively altered in lung cancers. The transcriptional modification technologies like RNA interference (RNAi) may be utilized to restore the altered transcriptional regulations in lung cancers. |
---|