Cargando…
Matrix Multiplication: Verifying Strong Uniquely Solvable Puzzles
Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras [9]. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326541/ http://dx.doi.org/10.1007/978-3-030-51825-7_32 |
Sumario: | Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras [9]. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs) [8]. We begin a systematic computer-aided search for these objects. We develop and implement algorithms based on reductions to [Formula: see text] and [Formula: see text] to verify that puzzles are strong USPs and to search for large strong USPs. We produce tight bounds on the maximum size of a strong USP for width [Formula: see text], and construct puzzles of small width that are larger than previous work. Although our work only deals with puzzles of small-constant width and does not produce a new, faster matrix multiplication algorithm, we provide evidence that there exist families of strong USPs that imply matrix multiplication algorithms that are more efficient than those currently known. |
---|