Cargando…
SAT-Based Encodings for Optimal Decision Trees with Explicit Paths
Decision trees play an important role both in Machine Learning and Knowledge Representation. They are attractive due to their immediate interpretability. In the spirit of Occam’s razor, and interpretability, it is desirable to calculate the smallest tree. This, however, has proven to be a challengin...
Autores principales: | Janota, Mikoláš, Morgado, António |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326558/ http://dx.doi.org/10.1007/978-3-030-51825-7_35 |
Ejemplares similares
-
Theory and applications of satisfiability testing - SAT 2019: 22nd international conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, proceedings
por: Janota, Mikolás, et al.
Publicado: (2019) -
Interpretable decision trees through MaxSAT
por: Alòs, Josep, et al.
Publicado: (2022) -
Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking
por: Bose, S. Subash Chandra, et al.
Publicado: (2023) -
Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding
por: Ju, Ming-Yi, et al.
Publicado: (2014) -
Path Optimization along Buoys Based on the Shortest Path Tree with Uncertain Atmospheric and Oceanographic Data
por: Xue, Han, et al.
Publicado: (2021)