Cargando…
Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study
The COVID-19 pandemia due to the SARS-CoV-2 coronavirus, in its first 4 months since its outbreak, has to date reached more than 200 countries worldwide with more than 2 million confirmed cases (probably a much higher number of infected), and almost 200,000 deaths. Amplification of viral RNA by (rea...
Autores principales: | Brinati, Davide, Campagner, Andrea, Ferrari, Davide, Locatelli, Massimo, Banfi, Giuseppe, Cabitza, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326624/ https://www.ncbi.nlm.nih.gov/pubmed/32607737 http://dx.doi.org/10.1007/s10916-020-01597-4 |
Ejemplares similares
-
A Genetic Attack Against Machine Learning Classifiers to Steal Biometric Actigraphy Profiles from Health Related Sensor Data
por: Garcia-Ceja, Enrique, et al.
Publicado: (2020) -
Automatic Grading of Retinal Blood Vessel in Deep Retinal Image Diagnosis
por: Maji, Debasis, et al.
Publicado: (2020) -
Routine blood tests as an active surveillance to monitor COVID-19 prevalence. A retrospective study
por: Ferrari, Davide, et al.
Publicado: (2020) -
Automatic Cardiac Structure Contouring for Small Datasets with Cascaded Deep Learning Models
por: van den Oever, L. B., et al.
Publicado: (2022) -
Three-Way Decision for Handling Uncertainty in Machine Learning: A Narrative Review
por: Campagner, Andrea, et al.
Publicado: (2020)