Cargando…
Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes
The biofloc system is a relatively new aquaculture technology that offers practical solution to maintain culture water quality by recycling nutrients and improves the health status and resistance of shrimps against microbial infection, yet the mode of action involved remains unclear. This study aime...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326785/ https://www.ncbi.nlm.nih.gov/pubmed/32670225 http://dx.doi.org/10.3389/fmicb.2020.01270 |
_version_ | 1783552409842221056 |
---|---|
author | Kumar, Vikash Wille, Mathieu Lourenço, Tânia Margarida Bossier, Peter |
author_facet | Kumar, Vikash Wille, Mathieu Lourenço, Tânia Margarida Bossier, Peter |
author_sort | Kumar, Vikash |
collection | PubMed |
description | The biofloc system is a relatively new aquaculture technology that offers practical solution to maintain culture water quality by recycling nutrients and improves the health status and resistance of shrimps against microbial infection, yet the mode of action involved remains unclear. This study aimed to unravel the underlying mechanism behind the protective effect of a biofloc system using Litopenaeus vannamei and acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus M0904 strain as a host-pathogen model. The results showed that a biofloc system maintained at a C/N ratio of 15, improves the water quality and contributes to the nutrition of cultured animals as bioflocs might serve as an additional protein source. Furthermore, the study demonstrated that the biofloc system enhances the survival of L. vannamei upon challenge with a V. parahaemolyticus AHPND strain. Remarkably, the results highlight that in the biofloc system, AHPND-causing V. parahaemolyticus possibly switch from free-living virulent planktonic phenotype to a non-virulent biofilm phenotype, as demonstrated by a decreased transcription of flagella-related motility genes (flaA, CheR, and fliS), Pir toxin (PirB(VP)), and AHPND plasmid genes (ORF14) and increased expression of the phenotype switching marker AlkPhoX gene in both in vitro and in vivo conditions. Taken together, results suggest that biofloc steer phenotype switching, contributing to the decreased virulence of V. parahaemolyticus AHPND strain toward shrimp postlarvae. This information reinforces our understanding about AHPND in a biofloc setting and opens the possibility to combat AHPND not only by trying to eliminate the AHPND-causing V. parahaemolyticus from the system but rather to steer the phenotypic switch. |
format | Online Article Text |
id | pubmed-7326785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73267852020-07-14 Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes Kumar, Vikash Wille, Mathieu Lourenço, Tânia Margarida Bossier, Peter Front Microbiol Microbiology The biofloc system is a relatively new aquaculture technology that offers practical solution to maintain culture water quality by recycling nutrients and improves the health status and resistance of shrimps against microbial infection, yet the mode of action involved remains unclear. This study aimed to unravel the underlying mechanism behind the protective effect of a biofloc system using Litopenaeus vannamei and acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus M0904 strain as a host-pathogen model. The results showed that a biofloc system maintained at a C/N ratio of 15, improves the water quality and contributes to the nutrition of cultured animals as bioflocs might serve as an additional protein source. Furthermore, the study demonstrated that the biofloc system enhances the survival of L. vannamei upon challenge with a V. parahaemolyticus AHPND strain. Remarkably, the results highlight that in the biofloc system, AHPND-causing V. parahaemolyticus possibly switch from free-living virulent planktonic phenotype to a non-virulent biofilm phenotype, as demonstrated by a decreased transcription of flagella-related motility genes (flaA, CheR, and fliS), Pir toxin (PirB(VP)), and AHPND plasmid genes (ORF14) and increased expression of the phenotype switching marker AlkPhoX gene in both in vitro and in vivo conditions. Taken together, results suggest that biofloc steer phenotype switching, contributing to the decreased virulence of V. parahaemolyticus AHPND strain toward shrimp postlarvae. This information reinforces our understanding about AHPND in a biofloc setting and opens the possibility to combat AHPND not only by trying to eliminate the AHPND-causing V. parahaemolyticus from the system but rather to steer the phenotypic switch. Frontiers Media S.A. 2020-06-24 /pmc/articles/PMC7326785/ /pubmed/32670225 http://dx.doi.org/10.3389/fmicb.2020.01270 Text en Copyright © 2020 Kumar, Wille, Lourenço and Bossier. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Kumar, Vikash Wille, Mathieu Lourenço, Tânia Margarida Bossier, Peter Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title | Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title_full | Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title_fullStr | Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title_full_unstemmed | Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title_short | Biofloc-Based Enhanced Survival of Litopenaeus vannamei Upon AHPND-Causing Vibrio parahaemolyticus Challenge Is Partially Mediated by Reduced Expression of Its Virulence Genes |
title_sort | biofloc-based enhanced survival of litopenaeus vannamei upon ahpnd-causing vibrio parahaemolyticus challenge is partially mediated by reduced expression of its virulence genes |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326785/ https://www.ncbi.nlm.nih.gov/pubmed/32670225 http://dx.doi.org/10.3389/fmicb.2020.01270 |
work_keys_str_mv | AT kumarvikash bioflocbasedenhancedsurvivaloflitopenaeusvannameiuponahpndcausingvibrioparahaemolyticuschallengeispartiallymediatedbyreducedexpressionofitsvirulencegenes AT willemathieu bioflocbasedenhancedsurvivaloflitopenaeusvannameiuponahpndcausingvibrioparahaemolyticuschallengeispartiallymediatedbyreducedexpressionofitsvirulencegenes AT lourencotaniamargarida bioflocbasedenhancedsurvivaloflitopenaeusvannameiuponahpndcausingvibrioparahaemolyticuschallengeispartiallymediatedbyreducedexpressionofitsvirulencegenes AT bossierpeter bioflocbasedenhancedsurvivaloflitopenaeusvannameiuponahpndcausingvibrioparahaemolyticuschallengeispartiallymediatedbyreducedexpressionofitsvirulencegenes |