Cargando…

Phytotoxicity and phytogenotoxicity of soil and air in the vicinity of a petrochemical plant in Płock (Poland)

Petrochemical industries have been widely recognised as important emission sources of airborne contaminants including heavy metals and polycyclic aromatic hydrocarbons PAHs, which affect the quality of air, soil and vegetation. In this study, our aim was to examine the phytotoxicity and phytogenotox...

Descripción completa

Detalles Bibliográficos
Autores principales: Karaczun, Zbigniew M., Obidoska, Grażyna, Żarska, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326826/
https://www.ncbi.nlm.nih.gov/pubmed/32306259
http://dx.doi.org/10.1007/s11356-020-08788-z
Descripción
Sumario:Petrochemical industries have been widely recognised as important emission sources of airborne contaminants including heavy metals and polycyclic aromatic hydrocarbons PAHs, which affect the quality of air, soil and vegetation. In this study, our aim was to examine the phytotoxicity and phytogenotoxicity of soils and air in the vicinity of a petrochemical plant, in order to assess the potential threat of such industrial objects for crops and natural vegetation, in the cases when the allowable concentrations of contaminants are not exceeded and the plants in the vicinity visually do not seem to be affected. For phytotoxicity and phytogenotoxicity assessment, the Phytotoxkit and respectively Vicia RTA and TRAD MCN bioassays were used. According to our results, in spite of relatively low content of heavy metals and PAHs (hardly any exceedance of standards), the phytotoxicity and especially phytogenotoxicity of soil samples collected up to 18 km from the refinery were detected by the bioindicators. The phytogenotoxicity of air was also indicated within the distance of up to 12 km. We concluded that to obtain the complete view of the environmental risks in a surveyed area, a combination of chemical analysis of environmental samples with the bioindication methods should be implemented. In addition, setting the acceptable levels of contaminants should involve a more extensive use of bioindication methods (especially genotoxicity assessment).