Cargando…
EO-MTRNN: evolutionary optimization of hyperparameters for a neuro-inspired computational model of spatiotemporal learning
For spatiotemporal learning with neural networks, hyperparameters are often set manually by a human expert. This is especially the case with multiple timescale networks that require a careful setting of the values of timescales in order to learn spatiotemporal data. However, this implies a cumbersom...
Autores principales: | Wieser, Erhard, Cheng, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326924/ https://www.ncbi.nlm.nih.gov/pubmed/32185485 http://dx.doi.org/10.1007/s00422-020-00828-8 |
Ejemplares similares
-
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
por: Wulff, Eric
Publicado: (2023) -
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
por: Wulff, Eric
Publicado: (2023) -
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
por: de Lacy, Nina, et al.
Publicado: (2022) -
Heuristic hyperparameter optimization of deep learning models for genomic prediction
por: Han, Junjie, et al.
Publicado: (2021) -
Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning
por: Agrawal, Shaashwat, et al.
Publicado: (2021)