Cargando…
Estimating and abstracting the 3D structure of feline bones using neural networks on X-ray (2D) images
Computing 3D bone models using traditional Computed Tomography (CT) requires a high-radiation dose, cost and time. We present a fully automated, domain-agnostic method for estimating the 3D structure of a bone from a pair of 2D X-ray images. Our triplet loss-trained neural network extracts a 128-dim...
Autores principales: | Čavojská, Jana, Petrasch, Julian, Mattern, Denny, Lehmann, Nicolas Jens, Voisard, Agnès, Böttcher, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326932/ https://www.ncbi.nlm.nih.gov/pubmed/32606393 http://dx.doi.org/10.1038/s42003-020-1057-3 |
Ejemplares similares
-
Improved non-destructive 2D and 3D X-ray imaging of leaf venation
por: Schneider, Julio V., et al.
Publicado: (2018) -
3D localization from 2D X-ray projection
por: Bertsche, Dagmar, et al.
Publicado: (2022) -
Inhibition of Crandell-Rees Feline Kidney cell proliferation by X-ray-induced senescence
por: KOIKE, Manabu, et al.
Publicado: (2021) -
The Electronic Bee Spy: Eavesdropping on Honeybee Communication via Electrostatic Field Recordings
por: Paffhausen, Benjamin H., et al.
Publicado: (2021) -
X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology
por: Katsamenis, Orestis L., et al.
Publicado: (2019)