Cargando…

Increased extreme hourly precipitation over China’s rice paddies from 1961 to 2012

Rice yield have been affected by the increased extreme precipitation events in recent decades. Yet, the spatio-temporal patterns of extreme precipitation by rice type and phenology remain elusive. Here, we investigate the characteristics of four extreme precipitation indices across China’s rice padd...

Descripción completa

Detalles Bibliográficos
Autores principales: Jian, Yiwei, Fu, Jin, Li, Bengang, Zhou, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326977/
https://www.ncbi.nlm.nih.gov/pubmed/32606440
http://dx.doi.org/10.1038/s41598-020-67429-0
Descripción
Sumario:Rice yield have been affected by the increased extreme precipitation events in recent decades. Yet, the spatio-temporal patterns of extreme precipitation by rice type and phenology remain elusive. Here, we investigate the characteristics of four extreme precipitation indices across China’s rice paddy and their potential association with crop yields, by using hourly precipitation data from 1,215 stations and rice phenology observations from 45 sub-regions. The data indicate that hourly extreme precipitation have significantly increased in 1961–2012 for single rice and early rice in China but not for late rice. Rice were mainly exposed to extreme precipitation from transplantation to flowering stages. The frequency and proportion of extreme precipitation were significantly increased by 2.0–4.7% and 2.3–2.9% per decade, respectively, mainly in south China and Yangtze River Basin. The precipitation intensity and maximum hourly precipitation were increased by 0.7–1.1% and 0.9–2.8% per decade, respectively, mainly in central China and southeast coastal area. These extreme precipitation indices played a role as important as accumulated precipitation and mean temperature on the interannual variability of rice yields, regardless of rice types. Our results also highlight the urgencies to uncover the underlying mechanisms of extreme precipitation on rice growth, which in turn strengthens the predictability of crop models.