Cargando…
Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield
Fruit traits such as cluster compactness, fruit maturity, and berry number per clusters are important to blueberry breeders and producers for making informed decisions about genotype selection related to yield traits and harvestability as well as for plant management. The goal of this study was to d...
Autores principales: | Ni, Xueping, Li, Changying, Jiang, Huanyu, Takeda, Fumiomi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326978/ https://www.ncbi.nlm.nih.gov/pubmed/32637138 http://dx.doi.org/10.1038/s41438-020-0323-3 |
Ejemplares similares
-
Nondestructive Detection and Quantification of Blueberry Bruising using Near-infrared (NIR) Hyperspectral Reflectance Imaging
por: Jiang, Yu, et al.
Publicado: (2016) -
Microbial Load of Fresh Blueberries Harvested by Different Methods
por: Wang, Peien, et al.
Publicado: (2023) -
Deep learning supported machine vision system to precisely automate the wild blueberry harvester header
por: Haydar, Zeeshan, et al.
Publicado: (2023) -
Hypoglycemic activity and constituents analysis of blueberry (Vaccinium corymbosum) fruit extracts
por: Huang, Weifeng, et al.
Publicado: (2018) -
Rain Cover and Netting Materials Differentially Affect Fruit Yield and Quality Traits in Two Highbush Blueberry Cultivars via Changes in Sunlight and Temperature Conditions
por: Matamala, María F., et al.
Publicado: (2023)