Cargando…
Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer
Genomics and transcriptomics have led to the widely-used molecular classification of breast cancer (BC). However, heterogeneous biological behaviors persist within breast cancer subtypes. Metabolomics is a rapidly-expanding field of study dedicated to cellular metabolisms affected by the environment...
Autores principales: | Gal, Jocelyn, Bailleux, Caroline, Chardin, David, Pourcher, Thierry, Gilhodes, Julia, Jing, Lun, Guigonis, Jean-Marie, Ferrero, Jean-Marc, Milano, Gerard, Mograbi, Baharia, Brest, Patrick, Chateau, Yann, Humbert, Olivier, Chamorey, Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327012/ https://www.ncbi.nlm.nih.gov/pubmed/32637048 http://dx.doi.org/10.1016/j.csbj.2020.05.021 |
Ejemplares similares
-
Survival analysis of patient groups defined by unsupervised machine learning clustering methods based on patient metabolomic data.
por: Bailleux, Caroline, et al.
Publicado: (2023) -
Metabolomic Signatures of Scarff–Bloom–Richardson (SBR) Grade in Non-Metastatic Breast Cancer
por: Bailleux, Caroline, et al.
Publicado: (2023) -
Host genetic variability and determinants of severe COVID-19
por: Brest, Patrick, et al.
Publicado: (2023) -
More light on cancer and COVID-19 reciprocal interaction
por: Brest, Patrick, et al.
Publicado: (2021) -
Using Genetics To Dissect SARS-CoV-2 Infection
por: Brest, Patrick, et al.
Publicado: (2021)