Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data
Characterisation of gene-regulatory network (GRN) interactions provides a stepping stone to understanding how genes affect cellular phenotypes. Yet, despite advances in profiling technologies, GRN reconstruction from gene expression data remains a pressing problem in systems biology. Here, we devise...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327016/ https://www.ncbi.nlm.nih.gov/pubmed/32606380 http://dx.doi.org/10.1038/s41540-020-0140-1 |