Cargando…
An artificial neural network approach for predicting hypertension using NHANES data
This paper focus on a neural network classification model to estimate the association among gender, race, BMI, age, smoking, kidney disease and diabetes in hypertensive patients. It also shows that artificial neural network techniques applied to large clinical data sets may provide a meaningful data...
Autores principales: | López-Martínez, Fernando, Núñez-Valdez, Edward Rolando, Crespo, Rubén González, García-Díaz, Vicente |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327031/ https://www.ncbi.nlm.nih.gov/pubmed/32606434 http://dx.doi.org/10.1038/s41598-020-67640-z |
Ejemplares similares
-
Deep Artificial Neural Networks for the Diagnostic of Caries Using Socioeconomic and Nutritional Features as Determinants: Data from NHANES 2013–2014
por: Zanella-Calzada, Laura A., et al.
Publicado: (2018) -
Association between urinary metals and leukocyte telomere length involving an artificial neural network prediction: Findings based on NHANES 1999–2002
por: Xia, Fang, et al.
Publicado: (2022) -
Neural population geometry: An approach for understanding biological and artificial neural networks
por: Chung, SueYeon, et al.
Publicado: (2021) -
Artificial neural networks for engineering applications
por: Alanis, Alma Y, et al.
Publicado: (2019) -
Hypertension in Women of Reproductive Age in the United States: NHANES 1999-2008
por: Bateman, Brian T., et al.
Publicado: (2012)