Cargando…
Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges
The two possible pathways toward artificial intelligence (AI)—(i) neuroscience-oriented neuromorphic computing [like spiking neural network (SNN)] and (ii) computer science driven machine learning (like deep learning) differ widely in their fundamental formalism and coding schemes (Pei et al., 2019)...
Autores principales: | Dutta, Sourav, Schafer, Clemens, Gomez, Jorge, Ni, Kai, Joshi, Siddharth, Datta, Suman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327100/ https://www.ncbi.nlm.nih.gov/pubmed/32670012 http://dx.doi.org/10.3389/fnins.2020.00634 |
Ejemplares similares
-
First demonstration of in-memory computing crossbar using multi-level Cell FeFET
por: Soliman, Taha, et al.
Publicado: (2023) -
Synergistic Approach
of Interfacial Layer Engineering
and READ-Voltage Optimization in HfO(2)-Based FeFETs
for In-Memory-Computing Applications
por: Raffel, Yannick, et al.
Publicado: (2022) -
Structural and Electrical Comparison of Si and Zr Doped Hafnium Oxide Thin Films and Integrated FeFETs Utilizing Transmission Kikuchi Diffraction
por: Lederer, Maximilian, et al.
Publicado: (2020) -
Area-Scalable 10(9)-Cycle-High-Endurance FeFET of Strontium Bismuth Tantalate Using a Dummy-Gate Process
por: Takahashi, Mitsue, et al.
Publicado: (2021) -
Laterally gated ferroelectric field effect transistor (LG-FeFET) using α-In(2)Se(3) for stacked in-memory computing array
por: Park, Sangyong, et al.
Publicado: (2023)