Cargando…
A Posteriori Error Estimates for Fully Discrete Finite Element Method for Generalized Diffusion Equation with Delay
In this paper, we derive several a posteriori error estimators for generalized diffusion equation with delay in a convex polygonal domain. The Crank–Nicolson method for time discretization is used and a continuous, piecewise linear finite element space is employed for the space discretization. The a...
Autores principales: | Wang, Wansheng, Yi, Lijun, Xiao, Aiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327226/ https://www.ncbi.nlm.nih.gov/pubmed/32834471 http://dx.doi.org/10.1007/s10915-020-01262-5 |
Ejemplares similares
-
A posteriori error estimation in finite element analysis
por: Ainsworth, Mark
Publicado: (2000) -
A posteriori error estimation for finite element methods, an overview
por: Melbø, H
Publicado: (2001) -
A posteriori error estimates for the virtual element method
por: Cangiani, Andrea, et al.
Publicado: (2017) -
Linear B-spline finite element method for the generalized diffusion equation with delay
por: Lubo, Gemeda Tolessa, et al.
Publicado: (2022) -
Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations
por: Feischl, Michael, et al.
Publicado: (2015)