Cargando…
Deep learning models in genomics; are we there yet?
With the evolution of biotechnology and the introduction of the high throughput sequencing, researchers have the ability to produce and analyze vast amounts of genomics data. Since genomics produce big data, most of the bioinformatics algorithms are based on machine learning methodologies, and latel...
Autor principal: | Koumakis, Lefteris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327302/ https://www.ncbi.nlm.nih.gov/pubmed/32637044 http://dx.doi.org/10.1016/j.csbj.2020.06.017 |
Ejemplares similares
-
Deep Learning in mHealth for Cardiovascular Disease, Diabetes, and Cancer: Systematic Review
por: Triantafyllidis, Andreas, et al.
Publicado: (2022) -
Type 1 Diabetes Hypoglycemia Prediction Algorithms: Systematic Review
por: Tsichlaki, Stella, et al.
Publicado: (2022) -
Safe Nanoparticles: Are We There Yet?
por: Najahi-Missaoui, Wided, et al.
Publicado: (2020) -
Cancer immunotherapy: are we there yet?
por: Li, Zihai, et al.
Publicado: (2013) -
Are we there yet?
por: Swann, Nicole
Publicado: (2019)