Cargando…
Application of neural network model in assisting device fitting for low vision patients
BACKGROUND: To explore the application of neural network models in artificial intelligence (AI)-aided devices fitting for low vision patients. METHODS: The data of 836 visually impaired people were collected in southwestern Fujian from May 2014 to May 2017. After a full eye examination, 629 low visi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327309/ https://www.ncbi.nlm.nih.gov/pubmed/32617322 http://dx.doi.org/10.21037/atm.2020.02.161 |
_version_ | 1783552513899757568 |
---|---|
author | Dai, Bingfa Yu, Yang Huang, Lijuan Meng, Zhiyong Chen, Liang Luo, Hongxia Chen, Ting Chen, Xuelan Ye, Wenwen Yan, Yuyuan Cai, Chi Zheng, Jianqing Zhao, Jun Dong, Liquan Hu, Jianmin |
author_facet | Dai, Bingfa Yu, Yang Huang, Lijuan Meng, Zhiyong Chen, Liang Luo, Hongxia Chen, Ting Chen, Xuelan Ye, Wenwen Yan, Yuyuan Cai, Chi Zheng, Jianqing Zhao, Jun Dong, Liquan Hu, Jianmin |
author_sort | Dai, Bingfa |
collection | PubMed |
description | BACKGROUND: To explore the application of neural network models in artificial intelligence (AI)-aided devices fitting for low vision patients. METHODS: The data of 836 visually impaired people were collected in southwestern Fujian from May 2014 to May 2017. After a full eye examination, 629 low vision patients were selected from this group. Based on the visual functions, rehabilitation needs, and living quality scores of the selected patients, the professionals chose assistive devices that were the best fit for the patients. The data of these three factors were then subjected to the quantitative analysis, and the results were digitized and labeled. The final datasets were used to train a fully connected deep neural networks to obtain an AI-aided model for assistive device fitting. RESULTS: In this study, the main causes of low vision in southwestern Fujian were congenital diseases, among which congenital cataract was the most common. During the low vision AI-aided devices fitting, we found that the intermediate distance magnifier was suitable for the largest number of patients. Through quantitative analysis of the research results, it was found that AI-aided devices fitting was closely related to visual function, rehabilitation needs and quality of life. If this complex relationship can be mapped into the neural network model, AI-aided device fitting can be realized. We built a fully connected neural network model for AI-aided device fitting. The input of the model was the characteristic data of low vision patients, and the output was the forecast of suitable devices. When the threshold of the model was 0.4, the accuracy was about 80% and the F1 value was about 0.31. This threshold can be used as the classification judgment threshold of the model. CONCLUSIONS: Low vision AI-aided device fitting is closely related to visual function, rehabilitation needs, and quality of life scores. The neural network model based on full connection can achieve high accuracy in AI-aided devices fitting. It has a great impact on clinical application. |
format | Online Article Text |
id | pubmed-7327309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-73273092020-07-01 Application of neural network model in assisting device fitting for low vision patients Dai, Bingfa Yu, Yang Huang, Lijuan Meng, Zhiyong Chen, Liang Luo, Hongxia Chen, Ting Chen, Xuelan Ye, Wenwen Yan, Yuyuan Cai, Chi Zheng, Jianqing Zhao, Jun Dong, Liquan Hu, Jianmin Ann Transl Med Original Article on Medical Artificial Intelligent Research BACKGROUND: To explore the application of neural network models in artificial intelligence (AI)-aided devices fitting for low vision patients. METHODS: The data of 836 visually impaired people were collected in southwestern Fujian from May 2014 to May 2017. After a full eye examination, 629 low vision patients were selected from this group. Based on the visual functions, rehabilitation needs, and living quality scores of the selected patients, the professionals chose assistive devices that were the best fit for the patients. The data of these three factors were then subjected to the quantitative analysis, and the results were digitized and labeled. The final datasets were used to train a fully connected deep neural networks to obtain an AI-aided model for assistive device fitting. RESULTS: In this study, the main causes of low vision in southwestern Fujian were congenital diseases, among which congenital cataract was the most common. During the low vision AI-aided devices fitting, we found that the intermediate distance magnifier was suitable for the largest number of patients. Through quantitative analysis of the research results, it was found that AI-aided devices fitting was closely related to visual function, rehabilitation needs and quality of life. If this complex relationship can be mapped into the neural network model, AI-aided device fitting can be realized. We built a fully connected neural network model for AI-aided device fitting. The input of the model was the characteristic data of low vision patients, and the output was the forecast of suitable devices. When the threshold of the model was 0.4, the accuracy was about 80% and the F1 value was about 0.31. This threshold can be used as the classification judgment threshold of the model. CONCLUSIONS: Low vision AI-aided device fitting is closely related to visual function, rehabilitation needs, and quality of life scores. The neural network model based on full connection can achieve high accuracy in AI-aided devices fitting. It has a great impact on clinical application. AME Publishing Company 2020-06 /pmc/articles/PMC7327309/ /pubmed/32617322 http://dx.doi.org/10.21037/atm.2020.02.161 Text en 2020 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article on Medical Artificial Intelligent Research Dai, Bingfa Yu, Yang Huang, Lijuan Meng, Zhiyong Chen, Liang Luo, Hongxia Chen, Ting Chen, Xuelan Ye, Wenwen Yan, Yuyuan Cai, Chi Zheng, Jianqing Zhao, Jun Dong, Liquan Hu, Jianmin Application of neural network model in assisting device fitting for low vision patients |
title | Application of neural network model in assisting device fitting for low vision patients |
title_full | Application of neural network model in assisting device fitting for low vision patients |
title_fullStr | Application of neural network model in assisting device fitting for low vision patients |
title_full_unstemmed | Application of neural network model in assisting device fitting for low vision patients |
title_short | Application of neural network model in assisting device fitting for low vision patients |
title_sort | application of neural network model in assisting device fitting for low vision patients |
topic | Original Article on Medical Artificial Intelligent Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327309/ https://www.ncbi.nlm.nih.gov/pubmed/32617322 http://dx.doi.org/10.21037/atm.2020.02.161 |
work_keys_str_mv | AT daibingfa applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT yuyang applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT huanglijuan applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT mengzhiyong applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT chenliang applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT luohongxia applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT chenting applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT chenxuelan applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT yewenwen applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT yanyuyuan applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT caichi applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT zhengjianqing applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT zhaojun applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT dongliquan applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients AT hujianmin applicationofneuralnetworkmodelinassistingdevicefittingforlowvisionpatients |