Cargando…
A novel mathematical approach of COVID-19 with non-singular fractional derivative
We analyze a proposition which considers new mathematical model of COVID-19 based on fractional ordinary differential equation. A non-singular fractional derivative with Mittag-Leffler kernel has been used and the numerical approximation formula of fractional derivative of function [Formula: see tex...
Autores principales: | Kumar, Sachin, Cao, Jinde, Abdel-Aty, Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327473/ https://www.ncbi.nlm.nih.gov/pubmed/32834602 http://dx.doi.org/10.1016/j.chaos.2020.110048 |
Ejemplares similares
-
A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels
por: Zhang, Zizhen
Publicado: (2020) -
Theoretical and numerical analysis of novel COVID-19 via fractional order mathematical model
por: Ali, Amjad, et al.
Publicado: (2021) -
Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives
por: Panwar, Virender Singh, et al.
Publicado: (2021) -
A study on fractional HBV model through singular and non-singular derivatives
por: Kumar, Sunil, et al.
Publicado: (2022) -
Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel
por: Algehyne, Ebrahem A., et al.
Publicado: (2021)