Cargando…

Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model

Recently, studies have shown that renal dysfunction is associated not only with overt diabetes but also with the preceding stage known as prediabetes. Diet and pharmacological interventions are the therapeutic approaches to managing prediabetes, but the compliance in combining the two interventions...

Descripción completa

Detalles Bibliográficos
Autores principales: Akinnuga, Akinjide Moses, Siboto, Angezwa, Khumalo, Bongiwe, Sibiya, Ntethelelo Hopewell, Ngubane, Phikelelani, Khathi, Andile
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327579/
https://www.ncbi.nlm.nih.gov/pubmed/32655765
http://dx.doi.org/10.1155/2020/2978340
_version_ 1783552573208264704
author Akinnuga, Akinjide Moses
Siboto, Angezwa
Khumalo, Bongiwe
Sibiya, Ntethelelo Hopewell
Ngubane, Phikelelani
Khathi, Andile
author_facet Akinnuga, Akinjide Moses
Siboto, Angezwa
Khumalo, Bongiwe
Sibiya, Ntethelelo Hopewell
Ngubane, Phikelelani
Khathi, Andile
author_sort Akinnuga, Akinjide Moses
collection PubMed
description Recently, studies have shown that renal dysfunction is associated not only with overt diabetes but also with the preceding stage known as prediabetes. Diet and pharmacological interventions are the therapeutic approaches to managing prediabetes, but the compliance in combining the two interventions is low. Hence, the efficacy of pharmacological intervention is reduced without diet modification. In our previous study, we established that bredemolic acid (BA) ameliorated glucose homeostasis via increased GLUT 4 expression in the skeletal muscle of prediabetic rats in the absence of diet intervention. However, the effects of bredemolic acid on renal function in prediabetic condition are unknown. Therefore, this study was aimed at investigating the ameliorative effects of bredemolic acid on renal dysfunction in a diet-induced prediabetic rat model. Thirty-six Sprague-Dawley male rats (150–180 g) were divided into two groups: the nonprediabetic (n = 6) and prediabetic (n = 30) groups which were fed normal diet (ND) and high-fat high-carbohydrate (HFHC) diet, respectively, for 20 weeks. After the 20(th) week, the prediabetic groups were subdivided into prediabetic control (PD) and 4 other prediabetic groups which were treated with either BA (80 mg/kg) or metformin (MET, 500 mg/kg) for further 12 weeks (21(st) to 32(nd)). Plasma, urine, and kidney samples were collected for biochemical analysis. The untreated prediabetic (PD) rats presented increased fluid intake and urine output; increased creatinine, urea, and uric acid plasma concentrations; albuminuria; proteinuria; sodium retention; potassium loss; increased aldosterone and kidney injury molecule (KIM-1) concentration; and increased urinary podocin mRNA expression. However, BA administration attenuated the renal markers and oxidative stress and decreased the urinary podocin mRNA expression. In conclusion, BA administration, regardless of diet modification, attenuates renal dysfunction in an experimentally induced prediabetic state.
format Online
Article
Text
id pubmed-7327579
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-73275792020-07-11 Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model Akinnuga, Akinjide Moses Siboto, Angezwa Khumalo, Bongiwe Sibiya, Ntethelelo Hopewell Ngubane, Phikelelani Khathi, Andile Oxid Med Cell Longev Research Article Recently, studies have shown that renal dysfunction is associated not only with overt diabetes but also with the preceding stage known as prediabetes. Diet and pharmacological interventions are the therapeutic approaches to managing prediabetes, but the compliance in combining the two interventions is low. Hence, the efficacy of pharmacological intervention is reduced without diet modification. In our previous study, we established that bredemolic acid (BA) ameliorated glucose homeostasis via increased GLUT 4 expression in the skeletal muscle of prediabetic rats in the absence of diet intervention. However, the effects of bredemolic acid on renal function in prediabetic condition are unknown. Therefore, this study was aimed at investigating the ameliorative effects of bredemolic acid on renal dysfunction in a diet-induced prediabetic rat model. Thirty-six Sprague-Dawley male rats (150–180 g) were divided into two groups: the nonprediabetic (n = 6) and prediabetic (n = 30) groups which were fed normal diet (ND) and high-fat high-carbohydrate (HFHC) diet, respectively, for 20 weeks. After the 20(th) week, the prediabetic groups were subdivided into prediabetic control (PD) and 4 other prediabetic groups which were treated with either BA (80 mg/kg) or metformin (MET, 500 mg/kg) for further 12 weeks (21(st) to 32(nd)). Plasma, urine, and kidney samples were collected for biochemical analysis. The untreated prediabetic (PD) rats presented increased fluid intake and urine output; increased creatinine, urea, and uric acid plasma concentrations; albuminuria; proteinuria; sodium retention; potassium loss; increased aldosterone and kidney injury molecule (KIM-1) concentration; and increased urinary podocin mRNA expression. However, BA administration attenuated the renal markers and oxidative stress and decreased the urinary podocin mRNA expression. In conclusion, BA administration, regardless of diet modification, attenuates renal dysfunction in an experimentally induced prediabetic state. Hindawi 2020-06-22 /pmc/articles/PMC7327579/ /pubmed/32655765 http://dx.doi.org/10.1155/2020/2978340 Text en Copyright © 2020 Akinjide Moses Akinnuga et al. //creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Akinnuga, Akinjide Moses
Siboto, Angezwa
Khumalo, Bongiwe
Sibiya, Ntethelelo Hopewell
Ngubane, Phikelelani
Khathi, Andile
Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title_full Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title_fullStr Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title_full_unstemmed Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title_short Ameliorative Effects of Bredemolic Acid on Markers Associated with Renal Dysfunction in a Diet-Induced Prediabetic Rat Model
title_sort ameliorative effects of bredemolic acid on markers associated with renal dysfunction in a diet-induced prediabetic rat model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327579/
https://www.ncbi.nlm.nih.gov/pubmed/32655765
http://dx.doi.org/10.1155/2020/2978340
work_keys_str_mv AT akinnugaakinjidemoses ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel
AT sibotoangezwa ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel
AT khumalobongiwe ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel
AT sibiyantethelelohopewell ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel
AT ngubanephikelelani ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel
AT khathiandile ameliorativeeffectsofbredemolicacidonmarkersassociatedwithrenaldysfunctioninadietinducedprediabeticratmodel