Cargando…

Prediction of recombinant Mycobacterium tuberculosis α-crystallin oligomer chaperone activity using polynomial graphs

Background: Mycobacterial α-crystallin (Acr) is a chaperone that prevents misfolding of proteins when Mycobacterium tuberculosis is found in a latent form in the host tissue. Methods: Using insulin as a model substrate and utilizing polynomial graphs, we attempted to predict molecular-level interact...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishnan, Gautam, Roy, Utpal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000 Research Limited 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327723/
https://www.ncbi.nlm.nih.gov/pubmed/32665842
http://dx.doi.org/10.12688/f1000research.16328.2
Descripción
Sumario:Background: Mycobacterial α-crystallin (Acr) is a chaperone that prevents misfolding of proteins when Mycobacterium tuberculosis is found in a latent form in the host tissue. Methods: Using insulin as a model substrate and utilizing polynomial graphs, we attempted to predict molecular-level interactions that are a function of the oligomeric state of the recombinant protein. The chaperone activity of the recombinant oligomeric Acr was measured at 60°C with Acr samples obtained before gel filtration chromatography and compared with a gel-filtered sample. Results: The polynomial graphs constructed showed improved molecular coverage of the insulin B chain by the oligomer. The 2 (nd) order coefficient is the one that changes with the oligomeric ratio of Acr and improves chaperone activity. Polynomial analysis suggested that it could be a useful parameter to predict chaperone activity for potential in vitro batches of M. tuberculosis Acr based on the dynamic nature of the association and disassociation of oligomers. Conclusions: The results showed that coverage of insulin B chain improved with higher ratio of 9-mer as compared to lower ratios. This was shown by both simulation plots and actual assay data. The polynomial graphs showed increase in the 2 (nd) order coefficient, thus suggesting the important role of oligomerisation in improved molecular coverage of insulin B chain.