Cargando…

MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium

In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are...

Descripción completa

Detalles Bibliográficos
Autores principales: Jafar, Ahmad Banji, Shafie, Sharidan, Ullah, Imran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327735/
https://www.ncbi.nlm.nih.gov/pubmed/32637680
http://dx.doi.org/10.1016/j.heliyon.2020.e04201
_version_ 1783552603943075840
author Jafar, Ahmad Banji
Shafie, Sharidan
Ullah, Imran
author_facet Jafar, Ahmad Banji
Shafie, Sharidan
Ullah, Imran
author_sort Jafar, Ahmad Banji
collection PubMed
description In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows.
format Online
Article
Text
id pubmed-7327735
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-73277352020-07-06 MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium Jafar, Ahmad Banji Shafie, Sharidan Ullah, Imran Heliyon Article In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows. Elsevier 2020-06-26 /pmc/articles/PMC7327735/ /pubmed/32637680 http://dx.doi.org/10.1016/j.heliyon.2020.e04201 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Jafar, Ahmad Banji
Shafie, Sharidan
Ullah, Imran
MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title_full MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title_fullStr MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title_full_unstemmed MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title_short MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
title_sort mhd radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327735/
https://www.ncbi.nlm.nih.gov/pubmed/32637680
http://dx.doi.org/10.1016/j.heliyon.2020.e04201
work_keys_str_mv AT jafarahmadbanji mhdradiativenanofluidflowinducedbyanonlinearstretchingsheetinaporousmedium
AT shafiesharidan mhdradiativenanofluidflowinducedbyanonlinearstretchingsheetinaporousmedium
AT ullahimran mhdradiativenanofluidflowinducedbyanonlinearstretchingsheetinaporousmedium