Cargando…

Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta

Parvalbumin (PV) interneuron dysfunction is associated with various brain disorders, including Alzheimer disease (AD). Here, we asked whether early PV neuron hyperexcitability primes the hippocampus for amyloid beta-induced functional impairment. We show that prolonged chemogenetic activation of PV...

Descripción completa

Detalles Bibliográficos
Autores principales: Hijazi, Sara, Heistek, Tim S., van der Loo, Rolinka, Mansvelder, Huibert D., Smit, August B., van Kesteren, Ronald E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327841/
https://www.ncbi.nlm.nih.gov/pubmed/32593000
http://dx.doi.org/10.1016/j.isci.2020.101271
_version_ 1783552629130919936
author Hijazi, Sara
Heistek, Tim S.
van der Loo, Rolinka
Mansvelder, Huibert D.
Smit, August B.
van Kesteren, Ronald E.
author_facet Hijazi, Sara
Heistek, Tim S.
van der Loo, Rolinka
Mansvelder, Huibert D.
Smit, August B.
van Kesteren, Ronald E.
author_sort Hijazi, Sara
collection PubMed
description Parvalbumin (PV) interneuron dysfunction is associated with various brain disorders, including Alzheimer disease (AD). Here, we asked whether early PV neuron hyperexcitability primes the hippocampus for amyloid beta-induced functional impairment. We show that prolonged chemogenetic activation of PV neurons induces long-term hyperexcitability of these cells, disrupts synaptic transmission, and causes spatial memory deficits on the short-term. On the long-term, pyramidal cells also become hyperexcitable, and synaptic transmission and spatial memory are restored. However, under these conditions of increased excitability of both PV and pyramidal cells, a single low-dose injection of amyloid beta directly into the hippocampus significantly impairs PV neuron function, increases pyramidal neuron excitability, and reduces synaptic transmission, resulting in significant spatial memory deficits. Taken together, our data show that an initial hyperexcitable state of PV neurons renders hippocampal function vulnerable to amyloid beta and may contribute to an increased risk for developing AD.
format Online
Article
Text
id pubmed-7327841
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-73278412020-07-06 Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta Hijazi, Sara Heistek, Tim S. van der Loo, Rolinka Mansvelder, Huibert D. Smit, August B. van Kesteren, Ronald E. iScience Article Parvalbumin (PV) interneuron dysfunction is associated with various brain disorders, including Alzheimer disease (AD). Here, we asked whether early PV neuron hyperexcitability primes the hippocampus for amyloid beta-induced functional impairment. We show that prolonged chemogenetic activation of PV neurons induces long-term hyperexcitability of these cells, disrupts synaptic transmission, and causes spatial memory deficits on the short-term. On the long-term, pyramidal cells also become hyperexcitable, and synaptic transmission and spatial memory are restored. However, under these conditions of increased excitability of both PV and pyramidal cells, a single low-dose injection of amyloid beta directly into the hippocampus significantly impairs PV neuron function, increases pyramidal neuron excitability, and reduces synaptic transmission, resulting in significant spatial memory deficits. Taken together, our data show that an initial hyperexcitable state of PV neurons renders hippocampal function vulnerable to amyloid beta and may contribute to an increased risk for developing AD. Elsevier 2020-06-14 /pmc/articles/PMC7327841/ /pubmed/32593000 http://dx.doi.org/10.1016/j.isci.2020.101271 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hijazi, Sara
Heistek, Tim S.
van der Loo, Rolinka
Mansvelder, Huibert D.
Smit, August B.
van Kesteren, Ronald E.
Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title_full Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title_fullStr Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title_full_unstemmed Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title_short Hyperexcitable Parvalbumin Interneurons Render Hippocampal Circuitry Vulnerable to Amyloid Beta
title_sort hyperexcitable parvalbumin interneurons render hippocampal circuitry vulnerable to amyloid beta
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327841/
https://www.ncbi.nlm.nih.gov/pubmed/32593000
http://dx.doi.org/10.1016/j.isci.2020.101271
work_keys_str_mv AT hijazisara hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta
AT heistektims hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta
AT vanderloorolinka hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta
AT mansvelderhuibertd hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta
AT smitaugustb hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta
AT vankesterenronalde hyperexcitableparvalbumininterneuronsrenderhippocampalcircuitryvulnerabletoamyloidbeta