Cargando…
A comprehensive empirical comparison of hubness reduction in high-dimensional spaces
Hubness is an aspect of the curse of dimensionality related to the distance concentration effect. Hubs occur in high-dimensional data spaces as objects that are particularly often among the nearest neighbors of other objects. Conversely, other data objects become antihubs, which are rarely or never...
Autores principales: | Feldbauer, Roman, Flexer, Arthur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327987/ https://www.ncbi.nlm.nih.gov/pubmed/32647403 http://dx.doi.org/10.1007/s10115-018-1205-y |
Ejemplares similares
-
Choosing ℓ(p) norms in high-dimensional spaces based on hub analysis
por: Flexer, Arthur, et al.
Publicado: (2015) -
DeepNOG: fast and accurate protein orthologous group assignment
por: Feldbauer, Roman, et al.
Publicado: (2020) -
User-centered visual explorer of in-process comparison in spatiotemporal space
por: Yu, Dong, et al.
Publicado: (2022) -
GPT2: Empirical slant delay model for radio space geodetic techniques
por: Lagler, K, et al.
Publicado: (2013) -
Emerging hubs in phantom perception connectomics
por: Mohan, Anusha, et al.
Publicado: (2016)