Cargando…
A fully automated deep learning pipeline for high-throughput colony segmentation and classification
Adenine auxotrophy is a commonly used non-selective genetic marker in yeast research. It allows investigators to easily visualize and quantify various genetic and epigenetic events by simply reading out colony color. However, manual counting of large numbers of colonies is extremely time-consuming,...
Autores principales: | Carl, Sarah H., Duempelmann, Lea, Shimada, Yukiko, Bühler, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328007/ https://www.ncbi.nlm.nih.gov/pubmed/32487517 http://dx.doi.org/10.1242/bio.052936 |
Ejemplares similares
-
Fully Automated Breast Density Segmentation and Classification Using Deep Learning
por: Saffari, Nasibeh, et al.
Publicado: (2020) -
Fully automated point spread function analysis using PyCalibrate
por: Metz, Jeremy, et al.
Publicado: (2023) -
Inheritance of a Phenotypically Neutral Epimutation Evokes Gene Silencing in Later Generations
por: Duempelmann, Lea, et al.
Publicado: (2019) -
The hair cell analysis toolbox is a precise and fully automated pipeline for whole cochlea hair cell quantification
por: Buswinka, Christopher J., et al.
Publicado: (2023) -
A fully automated pipeline for brain structure segmentation in multiple sclerosis
por: González-Villà, Sandra, et al.
Publicado: (2020)